
Scalability Issues in Sparse Factorization and

Triangular Solution

Sherry Li

Lawrence Berkeley National Laboratory

Sparse Days, CERFACS, June 23-24, 2008

Overview

• Basic algorithms

• Partitioning, processor assignment at different phases

• Scalability issues

• Current & future work

2

Sparse GE

• Scalar algorithm: 3 nested loops
– Can re-arrange loops to get different variants: left-looking, right-

looking, . . .

1

2

3

4

6

7

5L

U for i = 1 to n

column_scale (A(:,i))

for k = i+1 to n s.t. A(i,k) != 0

for j = i+1 to n s.t. A(j,i) != 0

A(j,k) = A(j,k) - A(j,i) * A(i,k)

 Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems

 Finding fill-ins is equivalent to finding transitive closure of G(A)

4

Major stages

1. Order equations & variables to preserve sparsity

• NP-hard, use heuristics

2. Symbolic factorization

• Identify supernodes, set up data structures and allocate

memory for L & U.

3. Numerical factorization – usually dominates total time

• How to pivot?

4. Triangular solutions – usually less than 5% total time

SuperLU_MT
1. Sparsity ordering

2. Factorization

• Partial pivoting

• Symbolic fact.

• Num. fact. (BLAS 2.5)

3. Solve

SuperLU_DIST
1. Static pivoting

2. Sparsity ordering

3. Symbolic fact.

4. Numerical fact. (BLAS 3)

5. Solve

5

SuperLU_DIST steps:

• Static numerical pivoting: improve diagonal dominance

– Currently use MC64 (HSL, serial)

– Being parallelized [J. Riedy]: auction algorithm

• Ordering to preserve sparsity

– Can use parallel graph partitioning: ParMetis, Scotch

• Symbolic factorization: determine pattern of {L\U}

– Parallelized [L. Grigori et al.]

• Numerics: Parallelized

– Factorization: usually dominate total time

– Triangular solutions

– Iterative refinement: triangular solution + SPMV

6

Supernode: dense blocks in {L\U}

• Good for high performance

– Enable use of BLAS 3

– Reduce inefficient indirect addressing (scatter/gather)

– Reduce time of the graph algorithms by traversing a

coarser graph

Matrix partitioning at different stages

• Distributed input A (user interface)

– 1-D block partition (distributed CRS format)

• Parallel symbolic factorization

– Tied with a ND ordering

– Distribution using separator tree, 1-D within separators

• Numeric phases

– 2-D block cyclic distribution

7

8

Parallel symbolic factorization

• Tree-based partitioning / assignment

• Use graph partitioning to
reorder/partition matrix

– ParMetis on graph of A + A’

• `Arrow-head’, two-level partitioning

– separator tree: subtree-to-
subprocessor mapping

– within separators: 1-D block
cyclic distribution

• Disadvantage:

works only with ND ordering, and a
binary tree

P0,1,2,3

P0,1 P2,3

P0 P1 P2 P3

P0

P1

P2

P3

9

Memory result of parallel symbolic

• Maximum per-processor memory

Accelerator: dds15 (Omega3P)Fusion: matrix181 (M3D-C1)

10

Runtime of parallel symbolic, IBM Power5

matrix181 P = 8 P = 256

symbolic Sequntial

Parallel

6.8

2.6

6.8

2.7

Entire solver Old

New

84.7

159.2

26.6

26.5

dds15 P = 8 P = 256

symbolic Sequntial

Parallel

4.6

1.6

4.6

0.5

Entire solver Old

New

64.1

66.3

43.2

31.4

Numeric phases: 2-D partition by supernodes

• Find supernode boundaries from columns of L

– Not to exceed MAXSUPER (~50)

• Apply same partition to rows of U

• Diagonal blocks are square, full, <= MAXSUPER;

off-diagonal blocks are rectangular, not full

• 2D block cyclic layout

• One step look-ahead to overlap comm. & comp.

• Scales to 1000s processors

12

Processor assignment in 2-D

Process mesh

2

3 4

1

5

0 2

3 4

1

5

0

2

3 4

1

5

0

2

3 4

1

5

0

210

2

3 4

1

5

0

2

3 4

1

5

0

210

3

0

3

0

3

0

0

Matrix

ACTIVE

Disadvantage: inflexible

0 1 2

3 54

Communications restricted:

- row communicators

- column communicators

Block dependency graph – DAG

• Based on nonzero structure of L+U

– Each diagonal block has edges directed to the blocks

below in the same column (L-part), and the blocks on the

right in the same row (U-part)

– Each pair of blocks L(r,k) and U(k,c) have edges directed to

block (r,c) for Schur complement update

13

Elimination proceeds from source to sink

Over the iteration space

for k = 1 : N,

dags and submatrices become smaller

• Higher level of dependency

• Lower arithmetic intensity (flops per byte of DRAM

access or communication)

Triangular solution

14

ii

i

j

jiji

i
L

xLb

x

1

1

1

00

0

0

1

1

1 22

2 0

3

33

3

3

33 4

44

4

4 5 5

5

5

0
4

0

3

1

5

0

4

1

+

0 2

3 4

1

5

Process mesh

2

3 4

15

Examples

Name Codes N |A| / N Fill-ratio

dds15 Acclerator

(Omega3P)

834,575 16 40.2

• Sparsity-preserving ordering: MMD applied to structure of A’+A

matrix181 Fusion

(M3D-C1)

589,698 161 9.3

stomach 3D finite diff. 213,360 14 45.5

twotone Nonlinear

anal. circuit

120,750 10 9.3

pre2 Circuit in

Freq.-domain

659,033 9 18.8

Load imbalance

• LB = avg-flops / max-flops

16

Communication

17

Current and future work

• LUsim – simulation-based performance model [P. Cicotti et

al.]

• Micro-benchmarks to calibrate memory access time, BLAS

speed, and network speed

• Memory system simulator for each processor

• Block dependency graph

• Better partition to improve load balance

• Better scheduling to reduce processor idle time

18

